Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite

نویسنده

  • PETER B. KELEMEN
چکیده

This paper presents results of modelling reaction between peridotite and fractionating tholeiitic basalt in simple and complex silicate systems. Reactions are outlined in appropriate binary and ternary silicate systems. In these simple systems, the result of reactions between 'basalt' and 'peridotite' may be treated as a combination of Fe-Mg exchange and mass transfer reactions at constant Fe/Mg. Fe-Mg exchange in ternary and higher-order systems is nearly isenthalpic, and involves a slight decrease in magma mass at constant temperature. Mass transfer reactions, typically involving dissolution of orthopyroxene and consequent crystallization of olivine, are also nearly isenthalpic in ternary and higher-order silicate systems, and produce a slight increase in the magma mass at constant temperature. The combined reactions are essentially isenthalpic and produce a slight increase in magma mass under conditions of constant temperature or constant enthalpy. Initial liquids saturated in plagioclase-I-olivine will become saturated only in olivine as a result of near-constant-temperature reaction with peridotite, and crystal products of such reactions will be dunite. Liquids saturated in clinopyroxene + olivine will remain on the cpx-ol cotectic during reaction with peridotite, but will crystallize much more olivine than clinopyroxene as a result of reaction, i.e., crystal products will be clinopyroxene-bearing dunite and wehrlite rather than olivine clinopyroxenite, which would be produced by cotectic crystallization. The Mg/Fe ratio of crystal products is 'buffered' by reaction with magnesian peridotite, and dunites so produced will have high, nearly constant Mg/Fe. Production of voluminous magnesian dunite in this manner does not require crystal fractionation of a highly magnesian olivine tholeiite or picrite liquid. Combined reaction with ultramafic wall rock and crystal fractionation due to falling temperature produces a calc-alkaline liquid line of descent from tholeiitic parental liquids under conditions of temperature, pressure, and initial liquid composition which would produce tholeiitic derivative liquids in a closed system. Specifically, closed-system differentiates show iron enrichment at near-constant silica concentration with decreasing temperature, whereas the same initial liquid reacting with peridotite produces silica-enriched derivatives at virtually constant Mg/Fe. Reaction between fractionating basalt and mafic to ultramafic rock is likely to be important in subduction-related magmatic arcs, where tholeiitic primary liquids pass slowly upward through hightemperature wall rock in the lower crust and upper mantle. Although other explanations can account for chemical variation in individual calc-alkaline series, none can account as well for the characteristics snared by all calc-alkaline series. This process, if it is volumetrically important on Earth, has important implications for (Phanerozoic) crustal evolution: sub-arc mantle should be enriched in iron, and depleted in silica and alumina, relative to sub-oceanic mantle, acting as a source for sialic crust It is probable that inter-occanic magmatic arcs have basement similar to alpine peridotite, in which suboceanic mantle has been modified by interaction with slowly ascending basaltic liquids at nearly * Present address: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 [Journal of Parobty. VoL 31, Port 1, pp 51-98, 1990] © Oitord Univcraty Prcu 1990

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assimilation of peridotite in zoned calc-alkaline plutonic complexes: evidence from the Big Jim complex, Washington Cascades

The Big Jim complex is a concentrically zoned ultramafic to felsic plutonic complex which intruded the pelitic Chiwaukum schist. Most of the major plutonic rock types (from websterite through hornblendite, gabbronorite, hornblende gabbro and diorite, to granodiorite) enclose harzburgite and metaperidotite xenoliths similar to foliated metaperidotite lenses included in the Chiwaukum schist. The ...

متن کامل

The origin of Mount St. Helens andesites

Smith, D. R. and Leeman, W. P., 1993. The origin of Mount St. Helens andesites. J. Volcanol. Geotherm. Res., 55: 271-303. Mount St. Helens volcano has intermittently produced mainly dacitic products but occasionally erupted a more diverse suite of lavas including basalts and andesites. Petrogenetic relations between these magmas provide insight into the dynamics of the subjacent magma system. M...

متن کامل

کانی شناسی، دما- فشار سنجی و تعیین زنجیره ماگمایی سنگهای آتشفشانی کوه دم، اردستان

The studied area is located in the north-east of Ardestan in Isfahan province. In Iran’s geological classification it lies in the central Iran zone. The volcanic rocks of the Kuh-e Dom area are predominantly rhyolite, rhyodacite, dacite, tuff, ignimbrite, andesite, banakite and basaltic-andesite. The major rock–forming minerals are quartz, plagioclase, alkali feldspar (orthoclase, albite), amph...

متن کامل

Thermometry and determine the characterization of magma of Cretaceous acidic rocks using the zircon mineral morphology and compare it with whole-rock chemistry in SE Saqqez, NW Iran

Zircon is an stable mineral during post crystallization processes and preserves characters of magmatic events. Zircon morphology can give some information about temperature, nature, and source of the magma. Study of the zircon morphology of Cretaceous granitoids and acidic volcanics from the southeast Saqqez area reveals that most of the crystals are P5 and S25 types with high alkalinity (I.A.)...

متن کامل

سازوکار شکل‌گیری باتولیت گرانیتوئیدی زاهدان، جنوب‌شرق ایران

Ellipsoidal huge granitoidic batholiths of Zahedan, with NW-SE trending, located in south of this city which is intruded in low metamorphosed Eocene flysches (eastern Iran flysch zone). This batholith has two compositional terms: an extensive intermediate-acid term includes diorite - granodiorite with igneous source (I- type origin) and a low extent crustal and hybrid origin acidic term (H-type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005